Wednesday 29 March 2017

Exponentiell Gleitender Durchschnitt Prognose

Vorhersage durch Glättung Techniken Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Anwendungsbereichen im MENU-Bereich auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die rechtzeitig geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Aufhebung der Wirkung durch zufällige Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken zeigen, wenn sie richtig angewendet werden, deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge ein, beginnend von der linken oberen Ecke und den Parameter (s), und klicken Sie dann auf die Schaltfläche Berechnen, um eine Vorhersage zu erhalten. Blank Boxen sind nicht in den Berechnungen enthalten, aber Nullen sind. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Datenmatrix zu wechseln, benutzen Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Prüfung ihres Graphen aufgedeckt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Bedingungsprognosemodellierung. Moving Averages: Moving Averages gehören zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentielle Glättung: Dies ist ein sehr beliebtes Schema, um eine geglättete Zeitreihe zu produzieren. Während bei fortlaufenden Mitteln die bisherigen Beobachtungen gleich gewichtet werden, weist Exponentialglättung exponentiell abnehmende Gewichte zu, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen werden bei der Prognose relativ viel mehr gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser bei der Handhabung von Trends. Triple Exponential Glättung ist besser bei der Behandlung von Parabel Trends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante a. Entspricht etwa einem einfachen gleitenden Mittelwert der Länge (d. H. Periode) n, wobei a und n verwandt sind durch: a 2 (n1) OR n (2 - a) a. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19-tägigen gleitenden Durchschnitt entsprechen. Und ein 40-Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt entsprechen, wobei eine Glättungskonstante gleich 0,04878 ist. Holts Linear Exponential Glättung: Angenommen, die Zeitreihe ist nicht saisonal, aber zeigt Trend. Holts-Methode schätzt sowohl den aktuellen Level als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein besonderer Fall der exponentiellen Glättung ist, indem die Periode des gleitenden Durchschnitts auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft wirksam. Jedoch kann man eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten Mean Absolute Error (MA Error). Wie man mehrere Glättungsmethoden vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognose-Technik gibt, ist der am weitesten verbreitete Ansatz bei der Verwendung visueller Vergleich von mehreren Prognosen, um ihre Genauigkeit zu beurteilen und wählen Sie unter den verschiedenen Vorhersage Methoden. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognosemethoden (unter Verwendung von zB Excel) aufzeichnen, wodurch ein visueller Vergleich erleichtert wird. Sie können die vorherigen Prognosen durch Glättungstechniken JavaScript verwenden, um die vergangenen Prognosewerte zu erhalten, die auf Glättungstechniken basieren, die nur einen einzelnen Parameter verwenden. Holt - und Winters-Methoden verwenden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuche und Fehler für die Parameter auszuwählen. Die einzige exponentielle Glättung unterstreicht die kurzfristige Perspektive, die sie auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die eine kleinste Quadrate zu den historischen Daten passt (oder transformierte historische Daten), repräsentiert die lange Reichweite, die auf dem grundlegenden Trend bedingt ist. Holts lineare exponentielle Glättung erfasst Informationen über den letzten Trend. Die Parameter in Holts-Modell sind Pegel-Parameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist und der Trends-Parameter erhöht werden sollte, wenn die aktuelle Trendrichtung durch die kausalen Faktoren unterstützt wird. Kurzfristige Prognose: Beachten Sie, dass jedes JavaScript auf dieser Seite eine einstufige Prognose bietet. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert dem Ende der Zeitreihendaten hinzu und klicken Sie dann auf dieselbe Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. In der Praxis wird der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihen liefern, wenn der Mittelwert konstant oder langsam verändert wird. Im Falle eines konstanten Mittels wird der größte Wert von m die besten Schätzungen des zugrunde liegenden Mittels geben. Eine längere Beobachtungsperiode wird die Effekte der Variabilität ausgleichen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung des zugrunde liegenden Prozesses zu reagieren. Zur Veranschaulichung schlagen wir einen Datensatz vor, der Änderungen des zugrunde liegenden Mittels der Zeitreihen beinhaltet. Die Figur zeigt die Zeitreihen, die für die Illustration verwendet wurden, zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als Konstante bei 10. Beginnend um die Zeit 21 erhöht er sich in jeder Periode um eine Einheit, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden durch Addition des Mittelwertes, eines zufälligen Rauschens aus einer Normalverteilung mit Nullmittelwert und Standardabweichung simuliert. 3. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir den Tisch benutzen, müssen wir uns daran erinnern, dass zu irgendeiner Zeit nur die bisherigen Daten bekannt sind. Die Schätzungen des Modellparameters, für drei verschiedene Werte von m werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung dargestellt. Die Figur zeigt die gleitende durchschnittliche Schätzung des Mittelwertes zu jeder Zeit und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Aus der Figur ergibt sich sofort eine Schlussfolgerung. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend zurück, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, wenn der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und der durch den gleitenden Durchschnitt vorhergesagte Mittelwert. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Für ein abnehmendes Mittel ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Vorspannung, die in der Schätzung eingeführt werden, sind Funktionen von m. Je größer der Wert von m. Je größer die Größe der Verzögerung und der Vorspannung ist. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittels sind in den nachstehenden Gleichungen angegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern es beginnt als Konstante, ändert sich zu einem Trend und wird dann wieder konstant. Auch die Beispielkurven sind vom Lärm betroffen. Die gleitende durchschnittliche Prognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Bias steigen proportional an. Die nachfolgenden Gleichungen zeigen die Verzögerung und die Vorspannung einer Prognoseperiode in die Zukunft im Vergleich zu den Modellparametern. Wiederum sind diese Formeln für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten uns über dieses Ergebnis nicht wundern. Der gleitende durchschnittliche Schätzer beruht auf der Annahme eines konstanten Mittels, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Untersuchungszeitraums. Da Echtzeit-Serien den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens die größte Wirkung für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widersprüchlichen Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu reduzieren und m zu reduzieren, um die Prognose besser auf Veränderungen zu reagieren Im gemein Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Ist die Zeitreihe wirklich ein konstanter Wert, so ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Begriff, der eine Funktion und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes, der mit einer Stichprobe von m Beobachtungen geschätzt wird, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Eine große m macht die Prognose nicht mehr auf eine Veränderung der zugrunde liegenden Zeitreihen. Um die Prognose auf Veränderungen zu reagieren, wollen wir m so klein wie möglich (1), aber das erhöht die Fehlerabweichung. Die praktische Vorhersage erfordert einen Zwischenwert. Vorhersage mit Excel Das Prognose-Add-In implementiert die gleitenden durchschnittlichen Formeln. Das folgende Beispiel zeigt die Analyse, die durch das Add-In für die Beispieldaten in Spalte B bereitgestellt wird. Die ersten 10 Beobachtungen sind indiziert -9 bis 0. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die MA (10) - Spalte (C) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall befindet sich in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Fore nach unten verschoben. Die Err (1) Spalte (E) zeigt den Unterschied zwischen Beobachtung und Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 gleich 6. Der prognostizierte Wert aus dem gleitenden Durchschnitt zum Zeitpunkt 0 beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und die mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet. Überdurchschnittliche und exponentielle Glättungsmodelle Als erster Schritt, um über mittlere Modelle hinauszugehen, können zufällige Wandermodelle und lineare Trendmodelle, Nichtseasonalmuster und Trends sein Extrapoliert mit einem gleitenden Durchschnitt oder Glättungsmodell. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-without-drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als quotsmoothedquot Version der ursprünglichen Serie, weil kurzfristige Mittelung hat die Wirkung der Glättung der Beulen in der ursprünglichen Serie. Durch die Anpassung des Grades der Glättung (die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu schlagen. Die einfachste Art von Mittelungsmodell ist die. Einfache (gleichgewichtete) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen: (Hier und anderswo verwende ich das Symbol 8220Y-hat8221 zu stehen Für eine Prognose der Zeitreihe Y, die zum frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde.) Dieser Durchschnitt ist in der Periode t (m1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigen wird, hinter dem wahren zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn m1, das einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um die besten Quoten für die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff: Das zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von der Quotierung in der Daten (die zufälligen Schwankungen) sowie das quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Vertrauensgrenzen werden nicht weiter erhöht, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Menge an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistik vergleicht, auch einen 3-Term-Durchschnitt: Modell C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um einen kleinen Marge über die 3 - term und 9-term Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Zurück zum Anfang der Seite) Browns Einfache Exponential-Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k-Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. h. den lokalen Mittelwert) der Reihe repräsentiert, wie er von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf den letzten Wert steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: Gleichermaßen können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und frühere Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose erhalten, indem man die vorherige Prognose in Richtung des vorherigen Fehlers um einen Bruchteil 945 anpasst Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Rabattfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu bedienen, wenn man das Modell auf einer Tabellenkalkulation implementiert: Es passt in eine Einzelzelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, in der der Wert von 945 gespeichert ist. Beachten Sie, dass bei 945 1 das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert ist. (Zurück zum Anfang der Seite) Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 945 gegenüber dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 945 Perioden zurückzukehren. Zum Beispiel, wenn 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas mehr auffallend auf Veränderungen, die in der jüngsten Vergangenheit auftreten. Zum Beispiel hat ein SMA-Modell mit 9 Begriffen und einem SES-Modell mit 945 0,2 beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und am Gleichzeitig ist es genau 8220forget8221 über Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt: Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Baureihe ergibt sich auf 0,2961, wie hier gezeigt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 10.2961 3.4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die Langzeitprognosen des SES-Modells sind eine horizontale Gerade. Wie im SMA-Modell und dem zufälligen Walk-Modell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das zufällige Spaziergangmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbar ist als das zufällige Spaziergangmodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So bietet die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA (1) Term und keinem konstanten Term. Ansonsten bekannt als ein quotARIMA (0,1,1) Modell ohne constantquot. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Menge 1-945 im SES-Modell. Zum Beispiel, wenn man ein ARIMA (0,1,1) Modell ohne Konstante an die hier analysierte Serie passt, ergibt sich der geschätzte MA (1) Koeffizient 0,7029, was fast genau ein minus 0.2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Um dies zu tun, geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA (1) Begriff mit einer Konstante, d. h. ein ARIMA (0,1,1) Modell mit konstant. Die langfristigen Prognosen werden dann einen Trend haben, der dem durchschnittlichen Trend entspricht, der über den gesamten Schätzungszeitraum beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Vorhersageverfahren verwenden. Die jeweilige Quotenquote (prozentuale Wachstumsrate) pro Periode kann als Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren . (Zurück zum Seitenanfang) Browns Linear (dh Double) Exponentielle Glättung Die SMA Modelle und SES Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel ok oder zumindest nicht so schlecht ist für 1- Schritt-voraus Prognosen, wenn die Daten relativ laut sind), und sie können modifiziert werden, um einen konstanten linearen Trend wie oben gezeigt zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet, und wenn es notwendig ist, mehr als einen Zeitraum voraus zu prognostizieren, dann könnte auch eine Einschätzung eines lokalen Trends erfolgen Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl von Ebene als auch von Trend berechnet. Das einfachste zeitveränderliche Trendmodell ist das lineare, exponentielle Glättungsmodell von Browns, das zwei verschiedene geglättete Serien verwendet, die zu unterschiedlichen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine ausgefeiltere Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des linearen exponentiellen Glättungsmodells von Brown8217s, wie das des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber äquivalenten Formen ausgedrückt werden. Die quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern Sie sich, dass unter einfachem Exponentielle Glättung, das wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung (mit demselben 945) auf die Reihe S erhalten wird: Schließlich ist die Prognose für Y tk. Für irgendwelche kgt1 ist gegeben durch: Dies ergibt e 1 0 (d. h. Cheat ein Bit, und lassen Sie die erste Prognose gleich der tatsächlichen ersten Beobachtung) und e 2 Y 2 8211 Y 1. Nach denen Prognosen mit der obigen Gleichung erzeugt werden. Dies ergibt die gleichen angepassten Werte wie die Formel auf Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination aus exponentieller Glättung mit saisonaler Anpassung darstellt. Holt8217s Lineare Exponential-Glättung Brown8217s LES-Modell berechnet lokale Schätzungen von Level und Trend durch Glättung der aktuellen Daten, aber die Tatsache, dass es dies mit einem einzigen Glättungsparameter macht, legt eine Einschränkung auf die Datenmuster, die es passen kann: das Niveau und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem, indem es zwei Glättungskonstanten einschließt, eine für die Ebene und eine für den Trend. Zu jeder Zeit t, wie in Brown8217s Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem Wert von Y, der zum Zeitpunkt t beobachtet wurde, und den vorherigen Schätzungen des Niveaus und des Tendenzes durch zwei Gleichungen berechnet, die eine exponentielle Glättung für sie separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der Istwert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv durch Interpolation zwischen Y tshy und dessen Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1 945 berechnet. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine laute Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv durch Interpolation zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 berechnet. Mit Gewichten von 946 und 1-946: Die Interpretation der Trend-Glättungs-Konstante 946 ist analog zu der Niveau-Glättungs-Konstante 945. Modelle mit kleinen Werten von 946 gehen davon aus, dass sich der Trend nur sehr langsam über die Zeit ändert, während Modelle mit Größer 946 nehmen an, dass es sich schneller ändert. Ein Modell mit einer großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, denn Fehler in der Trendschätzung werden bei der Prognose von mehr als einer Periode sehr wichtig. (Zurück zum Seitenanfang) Die Glättungskonstanten 945 und 946 können in der üblichen Weise durch Minimierung des mittleren quadratischen Fehlers der 1-Schritt-voraus-Prognosen geschätzt werden. Wenn dies in Statgraphics geschieht, ergeben sich die Schätzungen auf 945 0.3048 und 946 0,008. Der sehr kleine Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung des Trends von einer Periode zur nächsten einnimmt, so dass dieses Modell grundsätzlich versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Begriff des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Serie verwendet wird, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet wird, proportional zu 1 946, wenn auch nicht genau gleich . In diesem Fall stellt sich heraus, dass es sich um 10.006 125 handelt. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 wirklich 3 Dezimalstellen ist, aber sie ist von der gleichen allgemeinen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist durchschnittlich über eine ganze Menge Geschichte bei der Schätzung der Trend. Die prognostizierte Handlung unten zeigt, dass das LES-Modell einen geringfügig größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Auch der Schätzwert von 945 ist fast identisch mit dem, der durch die Anpassung des SES-Modells mit oder ohne Trend erhalten wird. Das ist also fast das gleiche Modell. Nun, sehen diese aus wie vernünftige Prognosen für ein Modell, das soll ein lokaler Trend schätzen Wenn Sie diese Handlung, es sieht so aus, als ob der lokale Trend hat sich nach unten am Ende der Serie Was ist passiert Die Parameter dieses Modells Wurden durch die Minimierung der quadratischen Fehler von 1-Schritt-voraus Prognosen, nicht längerfristige Prognosen geschätzt, in welchem ​​Fall der Trend doesn8217t machen einen großen Unterschied. Wenn alles, was Sie suchen, sind 1-Schritt-vor-Fehler, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell mehr im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trend-Glättung konstant manuell anpassen, so dass es eine kürzere Grundlinie für Trendschätzung verwendet. Zum Beispiel, wenn wir uns dafür entscheiden, 946 0,1 zu setzen, dann ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so vermitteln. Hier8217s, was die Prognose Handlung aussieht, wenn wir 946 0,1 gesetzt, während halten 945 0,3. Das sieht für diese Serie intuitiv vernünftig aus, obwohl es wahrscheinlich gefährlich ist, diesen Trend in Zukunft mehr als 10 Perioden zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber es werden ähnliche Ergebnisse (mit etwas mehr oder weniger Ansprechverhalten) mit 0,5 und 0,2 erhalten. (A) Holts linear exp. Glättung mit alpha 0.3048 und beta 0.008 (B) Holts linear exp. Glättung mit alpha 0,3 und beta 0,1 (C) Einfache exponentielle Glättung mit alpha 0,5 (D) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0.2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl treffen können Von 1-Schritt-voraus Prognosefehler innerhalb der Datenprobe Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir stark davon überzeugt sind, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zu stützen, so können wir einen Fall für das LES-Modell mit 945 0,3 und 946 0,1 machen. Wenn wir agnostisch darüber sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein und würde auch mehr Mittelwert der Prognosen für die nächsten 5 oder 10 Perioden geben. (Rückkehr nach oben) Welche Art von Trend-Extrapolation ist am besten: horizontal oder linear Empirische Evidenz deutet darauf hin, dass, wenn die Daten bereits für die Inflation angepasst wurden (falls erforderlich), dann kann es unklug sein, kurzfristig linear zu extrapolieren Trends sehr weit in die Zukunft. Trends, die heute deutlich werden, können in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, erhöhter Konkurrenz und zyklischer Abschwünge oder Aufschwünge in einer Branche nachlassen. Aus diesem Grund führt eine einfache, exponentielle Glättung oftmals zu einem besseren Out-of-Sample, als es sonst zu erwarten wäre, trotz der quadratischen horizontalen Trend-Extrapolation. Gedämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden auch in der Praxis häufig verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen. Das LES-Modell mit gedämpftem Trend kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA (1,1,2) - Modells, implementiert werden. Es ist möglich, Konfidenzintervalle um Langzeitprognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem sie sie als Sonderfälle von ARIMA-Modellen betrachten. (Vorsicht: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt von (i) dem RMS-Fehler des Modells ab, (ii) der Art der Glättung (einfach oder linear) (iii) der Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der voraussichtlichen Perioden, die Sie prognostizieren. Im Allgemeinen werden die Intervalle schneller ausgebreitet als 945 im SES-Modell größer und sie breiten sich viel schneller aus, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im ARIMA-Modellteil der Notizen weiter erörtert. (Zurück zum Seitenanfang.) Exponentielle Glättung erklärt. Kopiere das Copyright. Der Inhalt von InventoryOps ist urheberrechtlich geschützt und steht nicht zur Wiederveröffentlichung zur Verfügung. Wenn die Leute zuerst den Begriff Exponentielle Glättung begegnen, können sie denken, das klingt wie eine Hölle von viel Glättung. Was Glättung ist. Sie fangen dann an, eine komplizierte mathematische Berechnung vorzustellen, die wahrscheinlich einen Grad in der Mathematik erfordert, um zu verstehen, und hoffe, dass es eine eingebaute Excel-Funktion gibt, wenn sie es jemals tun müssen. Die Realität der exponentiellen Glättung ist weit weniger dramatisch und weit weniger traumatisch. Die Wahrheit ist, exponentielle Glättung ist eine sehr einfache Berechnung, die eine ziemlich einfache Aufgabe vollbringt. Es hat nur einen komplizierten Namen, denn was technisch passiert als Ergebnis dieser einfachen Berechnung ist eigentlich ein wenig kompliziert. Um eine exponentielle Glättung zu verstehen, hilft es, mit dem allgemeinen Konzept der Glättung zu beginnen und ein paar andere gängige Methoden, um Glättung zu erreichen. Was ist Glättung Glättung ist ein sehr häufiger statistischer Prozess. In der Tat, wir regelmäßig begegnen geglättete Daten in verschiedenen Formen in unserem täglichen Leben. Jedes Mal, wenn Sie einen Durchschnitt verwenden, um etwas zu beschreiben, verwenden Sie eine geglättete Zahl. Wenn Sie darüber nachdenken, warum Sie einen Durchschnitt verwenden, um etwas zu beschreiben, werden Sie schnell verstehen, das Konzept der Glättung. Zum Beispiel haben wir gerade den wärmsten Winter auf Rekord erlebt. Wie können wir das gut beurteilen? Wir beginnen mit Datensätzen der täglichen Hoch - und Tieftemperaturen für den Zeitraum, in dem wir Winter für jedes Jahr in der aufgezeichneten Geschichte nennen. Aber das lässt uns mit einer Reihe von Zahlen, die um ein bisschen herumspringen (es ist nicht wie jeden Tag dieser Winter war wärmer als die entsprechenden Tage aus allen früheren Jahren). Wir brauchen eine Nummer, die all das aus den Daten springt, so dass wir einen Winter zum nächsten einfacher vergleichen können. Das Entfernen des Sprungs um in den Daten wird als Glättung bezeichnet, und in diesem Fall können wir einfach einen einfachen Durchschnitt verwenden, um die Glättung zu erreichen. Bei der Bedarfsprognose verwenden wir Glättung, um zufällige Variation (Lärm) aus unserer historischen Nachfrage zu entfernen. Dies ermöglicht es uns, die Nachfragemuster besser zu identifizieren (vor allem Trend und Saisonalität) und die Nachfrage, die zur Schätzung der zukünftigen Nachfrage genutzt werden können. Der Lärm in der Nachfrage ist das gleiche Konzept wie das tägliche Springen um die Temperaturdaten. Nicht überraschend, die häufigste Art und Weise Menschen entfernen Lärm aus der Nachfrage Geschichte ist es, eine einfache durchschnittlich genauer, ein gleitender Durchschnitt zu verwenden. Ein gleitender Durchschnitt verwendet einfach eine vordefinierte Anzahl von Perioden, um den Durchschnitt zu berechnen, und diese Perioden bewegen sich, wenn die Zeit vergeht. Zum Beispiel, wenn Im mit einem 4-Monats-gleitenden Durchschnitt, und heute ist der 1. Mai, Im mit einem durchschnittlichen Nachfrage, die im Januar, Februar, März und April aufgetreten. Am 1. Juni werde ich die Nachfrage von Februar, März, April und Mai verwenden. Gewichteter gleitender Durchschnitt Wenn wir einen Durchschnitt verwenden, wenden wir die gleiche Bedeutung (Gewicht) auf jeden Wert im Datensatz an. Im 4-Monats-Gleitender Durchschnitt repräsentierte jeder Monat 25 des gleitenden Durchschnitts. Bei der Verwendung der Nachfrage Geschichte, um zukünftige Nachfrage (und vor allem zukünftige Trend) zu projizieren, ist es logisch, zu dem Schluss zu kommen, dass Sie möchten, dass die jüngste Geschichte einen größeren Einfluss auf Ihre Prognose haben wird. Wir können unsere gleitendurchschnittliche Berechnung anpassen, um verschiedene Gewichte auf jede Periode anzuwenden, um unsere gewünschten Ergebnisse zu erhalten. Wir geben diese Gewichte als Prozentsatz aus, und die Summe aller Gewichte für alle Perioden muss bis zu 100 addieren. Wenn wir also entscheiden, dass wir 35 als das Gewicht für die nächste Periode in unserem 4-Monats-gewichteten gleitenden Durchschnitt anwenden wollen, können wir Subtrahieren Sie 35 von 100, um zu finden, dass wir noch 65 übrig haben, um über die anderen 3 Perioden aufzuteilen. Zum Beispiel können wir mit einer Gewichtung von 15, 20, 30 und 35 für die 4 Monate (15 20 30 35 100) enden. Exponentielle Glättung. Wenn wir wieder auf das Konzept der Anwendung eines Gewichts auf die jüngste Periode (wie etwa 35 im vorigen Beispiel) und die Ausbreitung der restlichen Gewicht (berechnet durch Subtraktion der jüngsten Periode Gewicht von 35 von 100 bis 65), haben wir Die Grundbausteine ​​für unsere exponentielle Glättung. Die Steuerungseingabe der exponentiellen Glättungsberechnung ist als Glättungsfaktor (auch Glättungskonstante genannt) bekannt. Es stellt im Wesentlichen die Gewichtung dar, die auf die jüngste Periode verlangt wird. Also, wo wir 35 als Gewichtung für die jüngste Periode in der gewichteten gleitenden Durchschnittsberechnung verwendet haben, könnten wir auch wählen, 35 als Glättungsfaktor in unserer exponentiellen Glättungsberechnung zu verwenden, um einen ähnlichen Effekt zu erhalten. Der Unterschied zur exponentiellen Glättungsrechnung ist, dass anstelle von uns auch herauszufinden, wie viel Gewicht für jede vorherige Periode gilt, wird der Glättungsfaktor verwendet, um das automatisch zu machen. Also hier kommt der exponentielle Teil. Wenn wir 35 als Glättungsfaktor verwenden, wird die Gewichtung der letzten Periodennachfrage 35 sein. Die Gewichtung der nächsten letzten Perioden verlangt (der Zeitraum vor dem jüngsten) 65 von 35 (65 kommt von der Subtraktion von 35 aus 100). Dies entspricht 22,75 Gewichtung für diesen Zeitraum, wenn Sie die Mathematik machen. Die nächste jüngste Periode verlangt 65 von 65 von 35, was 14,79 entspricht. Die Periode davor wird als 65 von 65 von 65 von 35 gewichtet, was 9,61 entspricht, und so weiter. Und das geht zurück durch alle Ihre vorherigen Perioden den ganzen Weg zurück zum Anfang der Zeit (oder der Punkt, an dem Sie begonnen haben, exponentielle Glättung für dieses bestimmte Element). Du denkst wahrscheinlich, dass das aussieht wie eine ganze Menge Mathe. Aber die Schönheit der exponentiellen Glättung Berechnung ist, dass anstatt zu rechnen, um jede vorherige Periode jedes Mal, wenn Sie eine neue Perioden Nachfrage erhalten, verwenden Sie einfach die Ausgabe der exponentiellen Glättung Berechnung aus der vorherigen Periode, um alle vorherigen Perioden zu repräsentieren. Sind Sie verwirrt, doch wird dies sinnvoller sein, wenn wir uns die tatsächliche Berechnung ansehen. Normalerweise verweisen wir auf die Ausgabe der exponentiellen Glättungsberechnung als nächster Periodenvorhersage. In Wirklichkeit braucht die endgültige Prognose ein wenig mehr Arbeit, aber für die Zwecke dieser spezifischen Berechnung werden wir es als die Prognose verweisen. Die exponentielle Glättungsberechnung ist wie folgt: Die letzten Perioden verlangen multipliziert mit dem Glättungsfaktor. PLUS Die letzten Perioden prognostiziert multipliziert mit (ein Minus der Glättungsfaktor). D in den letzten Perioden verlangt S der Glättungsfaktor, der in Dezimalform dargestellt wird (also 35 wäre als 0,35 dargestellt). F die letzten Perioden prognostiziert (die Ausgabe der Glättungsberechnung aus der vorherigen Periode). ODER (unter der Annahme eines Glättungsfaktors von 0,35) (D 0,35) (F 0,65) Es wird nicht viel einfacher als das. Wie Sie sehen können, alles, was wir für Dateneingaben brauchen, sind hier die jüngsten Periodennachfrage und die letzten Periodenvorhersage. Wir wenden den Glättungsfaktor (Gewichtung) auf die letzten Perioden fordern die gleiche Weise wie wir in der gewichteten gleitenden Durchschnittsberechnung. Wir setzen dann die verbleibende Gewichtung (1 minus der Glättungsfaktor) auf die letzten Periodenvorhersage ein. Da die jüngsten Periodenprognosen auf der Grundlage der vorherigen Periodennachfrage und der vorangegangenen Periodenprognosen erstellt wurden, die auf der Nachfrage nach dem darauffolgenden Zeitraum und der Prognose für den darauffolgenden Zeitraum basierten, der auf der Nachfrage nach dem Vorjahreszeitraum beruhte Das und die Prognose für den Zeitraum vor dem, der auf der Zeit vor diesem basierte. Nun, Sie können sehen, wie alle vorherigen Perioden Nachfrage in der Berechnung vertreten sind, ohne tatsächlich zurückzukehren und etwas neu zu berechnen. Und das ist, was die anfängliche Popularität der exponentiellen Glättung fuhr. Es war nicht, weil es eine bessere Arbeit der Glättung als gewichtet gleitenden Durchschnitt, es war, weil es einfacher war, in einem Computer-Programm zu berechnen. Und weil Sie nicht brauchen, darüber nachzudenken, welche Gewichtung, um vorherige Perioden zu geben oder wie viele vorherige Perioden zu verwenden, wie Sie in gewichteten gleitenden Durchschnitt. Und weil es nur kühler klang als gewichteter gleitender Durchschnitt. In der Tat könnte man argumentieren, dass der gewichtete gleitende Durchschnitt eine größere Flexibilität bietet, da Sie mehr Kontrolle über die Gewichtung der vorherigen Perioden haben. Die Realität ist entweder von diesen können respektable Ergebnisse liefern, also warum nicht mit einfacher und kühler klingen gehen. Exponentielle Glättung in Excel Lets sehen, wie dies tatsächlich in einer Kalkulationstabelle mit realen Daten aussehen würde. Kopiere das Copyright. Der Inhalt von InventoryOps ist urheberrechtlich geschützt und steht nicht zur Wiederveröffentlichung zur Verfügung. In Abbildung 1A haben wir eine Excel-Kalkulationstabelle mit 11 Wochen Nachfrage und eine exponentiell geglättete Prognose, die aus dieser Nachfrage berechnet wird. Ive verwendet einen Glättungsfaktor von 25 (0,25 in Zelle C1). Die aktuelle aktive Zelle ist die Zelle M4, die die Prognose für die Woche 12 enthält. Sie können in der Formelleiste sehen, die Formel ist (L3C1) (L4 (1-C1)). So sind die einzigen direkten Eingaben zu dieser Berechnung die vorherigen Periodenanforderungen (Zelle L3), die vorherigen Periodenvorhersage (Zelle L4) und der Glättungsfaktor (Zelle C1, dargestellt als absolute Zellreferenz C1). Wenn wir eine exponentielle Glättungsberechnung starten, müssen wir den Wert für die 1. Prognose manuell stecken. Also in der Zelle B4, anstatt einer Formel, haben wir nur die Nachfrage aus dem gleichen Zeitraum wie die Prognose eingegeben. In Zelle C4 haben wir unsere 1. exponentielle Glättungsberechnung (B3C1) (B4 (1-C1)). Wir können dann Cell C4 kopieren und in die Zellen D4 bis M4 einfügen, um den Rest unserer Prognosezellen zu füllen. Sie können nun auf eine beliebige Prognosezelle doppelklicken, um zu sehen, dass sie auf den vorherigen Periodenprognosezelle basiert und die vorherigen Perioden die Zelle verlangen. So erbt jede nachfolgende exponentielle Glättungsberechnung die Ausgabe der vorherigen exponentiellen Glättungsberechnung. Das ist, wie jede vorherige Periode Nachfrage in der letzten Periodenberechnung dargestellt wird, obwohl diese Berechnung nicht direkt auf diese vorherigen Perioden verweist. Wenn du Lust haben willst, kannst du Excels Trace Präzedenzfälle nutzen. Um dies zu tun, klicken Sie auf Cell M4, dann auf die Multifunktionsleiste (Excel 2007 oder 2010) klicken Sie auf die Registerkarte Formeln und klicken Sie dann auf Trace Precedents. Es wird die Verbindungslinien auf die 1. Stufe der Präzedenzfälle ziehen, aber wenn du auf Trace Precedents klickst, zieht es Verbindungslinien zu allen vorherigen Perioden, um dir die ererbten Beziehungen zu zeigen. Jetzt sehen wir, welche exponentielle Glättung für uns getan hat. Abbildung 1B zeigt ein Liniendiagramm unserer Nachfrage und Prognose. Sie sehen, wie die exponentiell geglättete Prognose den Großteil der Jaggedness (das Springen um) von der wöchentlichen Nachfrage entfernt, aber immer noch gelingt, dem zu folgen, was ein Aufwärtstrend bei der Nachfrage zu sein scheint. Youll auch bemerken, dass die geglättete Prognoselinie tendenziell niedriger als die Nachfragelinie ist. Dies ist bekannt als Trendverzögerung und ist ein Nebeneffekt des Glättungsprozesses. Jedes Mal, wenn Sie Glättung verwenden, wenn ein Trend vorhanden ist, wird Ihre Prognose hinter dem Trend liegen. Das gilt für jede Glättungstechnik. In der Tat, wenn wir diese Kalkulationstabelle fortsetzen und die Eingabe von niedrigeren Nachfragezahlen (einen Abwärtstrend) einführen würden, würden Sie die Nachfragelinie fallen sehen, und die Trendlinie bewegt sich darüber, bevor sie den Abwärtstrend verfolgt. Thats, warum ich schon erwähnt habe die Ausgabe aus der exponentiellen Glättung Berechnung, die wir eine Prognose nennen, braucht noch etwas mehr Arbeit. Es gibt viel mehr zu prognostizieren als nur Glättung der Beulen in der Nachfrage. Wir müssen zusätzliche Anpassungen für Dinge wie Trend Verzögerung, Saisonalität, bekannte Ereignisse, die die Nachfrage beeinflussen können, etc. Aber alles, was über den Umfang dieses Artikels ist. Sie werden wahrscheinlich auch in Begriffe wie doppel-exponentielle Glättung und dreifach-exponentielle Glättung. Diese Begriffe sind ein bisschen irreführend, da Sie die Nachfrage nicht mehrmals neu beherrschen (Sie könnten, wenn Sie wollen, aber das ist nicht der Punkt hier). Diese Begriffe stellen eine exponentielle Glättung auf zusätzliche Elemente der Prognose dar. Also mit einfacher, exponentieller Glättung glätten Sie die Basisanforderung, aber mit doppelter exponentieller Glättung glätten Sie die Basisanforderung und den Trend und mit der dreifach exponentiellen Glättung glätten Sie die Basisanforderung plus den Trend und die Saisonalität. Die andere am häufigsten gestellte Frage nach exponentieller Glättung ist, wo bekomme ich meinen Glättungsfaktor Es gibt keine magische Antwort hier, du musst verschiedene Glättungsfaktoren mit deinen Bedarfsdaten testen, um zu sehen, was dir die besten Ergebnisse bringt. Es gibt Berechnungen, die den Glättungsfaktor automatisch einstellen und ändern können. Diese fallen unter den Begriff adaptive Glättung, aber Sie müssen vorsichtig mit ihnen sein. Es gibt einfach keine perfekte Antwort, und du solltest keine Berechnungen ohne gründliche Prüfung umsetzen und ein gründliches Verständnis dafür schaffen, was diese Berechnung tut. Sie sollten auch was-if-Szenarien ausführen, um zu sehen, wie diese Berechnungen auf Änderungsänderungen reagieren, die derzeit nicht in den Bedarfsdaten vorhanden sind, die Sie zum Testen verwenden. Das Datenbeispiel, das ich bisher benutzt habe, ist ein sehr gutes Beispiel für eine Situation, in der man wirklich andere Szenarien testen muss. Das besondere Datenbeispiel zeigt einen etwas konsequenten Aufwärtstrend. Viele große Unternehmen mit sehr teuren Prognosesoftware haben sich in der nicht so weit entfernten Vergangenheit in große Schwierigkeiten gebracht, als ihre Software-Einstellungen, die für eine wachsende Wirtschaft gezwickt wurden, nicht gut reagierten, als die Wirtschaft stagnierte oder schrumpfte. Dinge wie diese passieren, wenn Sie nicht verstehen, was Ihre Berechnungen (Software) tatsächlich tut. Wenn sie ihre Prognosesysteme verstanden hätten, hätten sie gewusst, dass sie in den Fall gehen mussten, wenn es plötzliche dramatische Veränderungen in ihrem Geschäft gab. So haben Sie es die Grundlagen der exponentiellen Glättung erklärt. Wollen Sie mehr über die Verwendung von exponentiellen Glättung in einer tatsächlichen Prognose wissen, schauen Sie sich mein Buch Inventory Management Explained. Kopiere das Copyright. Der Inhalt von InventoryOps ist urheberrechtlich geschützt und steht nicht zur Wiederveröffentlichung zur Verfügung. Dave Piasecki Ist Inhaberin der Inventory Operations Consulting LLC. Ein Beratungsunternehmen, das Dienstleistungen im Zusammenhang mit Bestandsführung, Materialhandling und Lagerbetrieb erbringt. Er hat über 25 Jahre Erfahrung im Betriebsmanagement und kann über seine Website (Inventar) erreicht werden, wo er weitere relevante Informationen unterhält. Mein Geschäft


No comments:

Post a Comment